Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
R
rcmcjobs
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 14
    • Issues 14
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar

新注册的用户请输入邮箱并保存,随后登录邮箱激活账号。后续可直接使用邮箱登录!

  • Arlie Steffan
  • rcmcjobs
  • Issues
  • #4

Closed
Open
Opened Feb 03, 2025 by Arlie Steffan@arliesteffan66Maintainer

Artificial General Intelligence


Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly exceeds human cognitive abilities. AGI is considered among the definitions of strong AI.

Creating AGI is a main objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and advancement projects across 37 countries. [4]
The timeline for achieving AGI remains a subject of continuous argument among researchers and professionals. As of 2023, some argue that it might be possible in years or years; others maintain it may take a century or longer; a minority believe it might never be accomplished; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed issues about the fast development towards AGI, suggesting it might be achieved quicker than numerous anticipate. [7]
There is dispute on the specific definition of AGI and regarding whether modern large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have actually specified that mitigating the danger of human termination presented by AGI needs to be a global concern. [14] [15] Others discover the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology

AGI is likewise understood as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) is able to resolve one particular issue but lacks basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as humans. [a]
Related ideas include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is much more typically smart than people, [23] while the notion of transformative AI associates with AI having a big effect on society, for instance, similar to the farming or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For instance, a qualified AGI is defined as an AI that outshines 50% of skilled adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics

Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular techniques. [b]
Intelligence characteristics

Researchers usually hold that intelligence is required to do all of the following: [27]
factor, usage method, fix puzzles, and make judgments under uncertainty represent understanding, consisting of typical sense understanding strategy find out

  • interact in natural language
  • if essential, incorporate these abilities in conclusion of any offered objective

Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about extra characteristics such as imagination (the ability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that display numerous of these abilities exist (e.g. see computational imagination, automated reasoning, choice support group, robotic, evolutionary calculation, smart representative). There is debate about whether modern AI systems possess them to a sufficient degree.

Physical traits

Other capabilities are thought about desirable in intelligent systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the capability to act (e.g. move and manipulate things, change area to explore, etc).
This includes the capability to detect and react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and control objects, modification area to explore, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language designs (LLMs) might already be or end up being AGI. Even from a less positive viewpoint on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never been proscribed a particular physical embodiment and therefore does not demand a capability for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI

Several tests meant to validate human-level AGI have been thought about, consisting of: [33] [34]
The concept of the test is that the machine has to attempt and pretend to be a guy, by answering questions put to it, and it will just pass if the pretence is reasonably persuading. A considerable portion of a jury, who must not be professional about devices, need to be taken in by the pretence. [37]
AI-complete issues

A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would require to execute AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to need general intelligence to solve in addition to people. Examples consist of computer vision, natural language understanding, and handling unanticipated circumstances while solving any real-world issue. [48] Even a specific job like translation needs a machine to check out and compose in both languages, follow the author's argument (reason), understand the context (understanding), and ratemywifey.com faithfully recreate the author's initial intent (social intelligence). All of these issues require to be resolved all at once in order to reach human-level maker performance.

However, a number of these jobs can now be performed by modern big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous standards for checking out understanding and visual reasoning. [49]
History

Classical AI

Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were convinced that synthetic basic intelligence was possible and that it would exist in just a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the project of making HAL 9000 as reasonable as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will considerably be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.

However, in the early 1970s, it ended up being apparent that scientists had actually grossly undervalued the difficulty of the task. Funding agencies became skeptical of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual discussion". [58] In response to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in twenty years, AI scientists who forecasted the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a credibility for making vain guarantees. They became reluctant to make forecasts at all [d] and avoided reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research

In the 1990s and early 21st century, mainstream AI achieved industrial success and scholastic respectability by concentrating on specific sub-problems where AI can produce verifiable outcomes and business applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology market, and research study in this vein is heavily moneyed in both academic community and industry. As of 2018 [upgrade], development in this field was considered an emerging trend, and a fully grown phase was anticipated to be reached in more than 10 years. [64]
At the millenium, numerous mainstream AI researchers [65] hoped that strong AI might be established by combining programs that solve different sub-problems. Hans Moravec wrote in 1988:

I am confident that this bottom-up route to expert system will one day fulfill the traditional top-down path more than half way, ready to supply the real-world proficiency and the commonsense understanding that has been so frustratingly elusive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:

The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is truly only one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, since it looks as if getting there would simply total up to uprooting our signs from their intrinsic significances (thereby simply reducing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research study

The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to satisfy objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to increase a mathematical meaning of intelligence rather than show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The very first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a number of visitor lecturers.

As of 2023 [upgrade], a small number of computer system scientists are active in AGI research, and many add to a series of AGI conferences. However, significantly more researchers have an interest in open-ended learning, [76] [77] which is the concept of allowing AI to continuously find out and innovate like humans do.

Feasibility

As of 2023, the advancement and potential achievement of AGI stays a subject of intense debate within the AI community. While conventional consensus held that AGI was a remote objective, current advancements have actually led some researchers and industry figures to claim that early forms of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and fundamentally unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between contemporary computing and human-level synthetic intelligence is as wide as the gulf in between present area flight and useful faster-than-light spaceflight. [80]
A further challenge is the absence of clarity in defining what intelligence involves. Does it require consciousness? Must it display the capability to set goals along with pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence need clearly duplicating the brain and its particular faculties? Does it require feelings? [81]
Most AI researchers believe strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, however that today level of progress is such that a date can not accurately be predicted. [84] AI specialists' views on the feasibility of AGI wax and subside. Four polls performed in 2012 and 2013 suggested that the typical estimate among specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never ever" when asked the very same concern but with a 90% confidence rather. [85] [86] Further present AGI progress considerations can be found above Tests for confirming human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might reasonably be considered as an early (yet still incomplete) version of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has actually currently been accomplished with frontier designs. They wrote that unwillingness to this view originates from four main factors: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 also marked the development of big multimodal models (big language designs capable of processing or generating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time believing before they respond". According to Mira Murati, this capability to believe before responding represents a new, extra paradigm. It enhances model outputs by investing more computing power when generating the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training information and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had accomplished AGI, specifying, "In my opinion, we have currently achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than most people at most jobs." He also addressed criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their knowing procedure to the clinical approach of observing, hypothesizing, and validating. These declarations have stimulated dispute, as they depend on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show exceptional flexibility, they might not totally satisfy this standard. Notably, Kazemi's remarks came shortly after OpenAI removed "AGI" from the terms of its partnership with Microsoft, prompting speculation about the company's tactical objectives. [95]
Timescales

Progress in artificial intelligence has traditionally gone through durations of fast development separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to create space for additional development. [82] [98] [99] For example, the hardware available in the twentieth century was not enough to carry out deep learning, which needs large numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that estimates of the time needed before a really versatile AGI is built vary from 10 years to over a century. Since 2007 [update], the agreement in the AGI research study neighborhood seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have given a large range of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the start of AGI would take place within 16-26 years for modern and historic forecasts alike. That paper has been slammed for how it categorized opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the conventional method utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. An adult comes to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model efficient in carrying out many diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to adhere to their security standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 different tasks. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI models and showed human-level efficiency in jobs covering several domains, such as mathematics, coding, and law. This research stimulated an argument on whether GPT-4 might be thought about an early, insufficient variation of artificial basic intelligence, stressing the need for further exploration and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things could really get smarter than individuals - a couple of people thought that, [...] But many individuals thought it was way off. And I thought it was method off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.

In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has been quite incredible", which he sees no reason that it would decrease, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least in addition to humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI worker, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation

While the development of transformer models like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can act as an alternative method. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and after that copying and replicating it on a computer system or another computational gadget. The simulation design should be adequately loyal to the initial, so that it acts in almost the exact same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been talked about in artificial intelligence research study [103] as a method to strong AI. Neuroimaging innovations that could provide the essential detailed understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a comparable timescale to the computing power needed to replicate it.

Early approximates

For low-level brain simulation, an extremely powerful cluster of computer systems or GPUs would be required, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware needed to equate to the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a measure used to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the required hardware would be available at some point between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.

Current research study

The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially comprehensive and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.

Criticisms of simulation-based techniques

The artificial neuron model presumed by Kurzweil and used in numerous current synthetic neural network implementations is easy compared with biological nerve cells. A brain simulation would likely have to catch the detailed cellular behaviour of biological neurons, presently understood just in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's estimate. In addition, the quotes do not represent glial cells, which are known to play a role in cognitive procedures. [125]
An essential criticism of the simulated brain method originates from embodied cognition theory which asserts that human personification is a necessary aspect of human intelligence and is essential to ground meaning. [126] [127] If this theory is right, any totally practical brain design will require to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unknown whether this would suffice.

Philosophical point of view

"Strong AI" as defined in approach

In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction in between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (just) imitate it thinks and has a mind and awareness.
The very first one he called "strong" since it makes a more powerful statement: it assumes something unique has happened to the machine that exceeds those abilities that we can test. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" device, but the latter would also have subjective mindful experience. This usage is also common in academic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is required for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most synthetic intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it actually has mind - undoubtedly, there would be no chance to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.

Consciousness

Consciousness can have various meanings, and some aspects play significant functions in sci-fi and the principles of artificial intelligence:

Sentience (or "remarkable awareness"): The ability to "feel" understandings or emotions subjectively, instead of the capability to factor about understandings. Some theorists, such as David Chalmers, utilize the term "awareness" to refer solely to extraordinary consciousness, which is approximately comparable to life. [132] Determining why and how subjective experience occurs is referred to as the hard problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had achieved sentience, though this claim was extensively disputed by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a different person, specifically to be consciously mindful of one's own thoughts. This is opposed to merely being the "subject of one's thought"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the exact same way it represents everything else)-however this is not what people normally mean when they utilize the term "self-awareness". [g]
These characteristics have a moral measurement. AI sentience would trigger concerns of welfare and legal defense, similarly to animals. [136] Other elements of awareness related to cognitive capabilities are also relevant to the principle of AI rights. [137] Figuring out how to incorporate advanced AI with existing legal and social structures is an emergent issue. [138]
Benefits

AGI could have a wide array of applications. If oriented towards such objectives, AGI could help reduce various problems worldwide such as cravings, hardship and health problems. [139]
AGI could improve productivity and efficiency in many jobs. For example, in public health, AGI might speed up medical research, significantly versus cancer. [140] It could look after the elderly, [141] and equalize access to rapid, premium medical diagnostics. It could use enjoyable, inexpensive and individualized education. [141] The requirement to work to subsist might become obsolete if the wealth produced is correctly rearranged. [141] [142] This likewise raises the concern of the place of humans in a drastically automated society.

AGI could likewise assist to make reasonable choices, and to anticipate and avoid catastrophes. It might likewise assist to enjoy the benefits of possibly devastating technologies such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI's primary objective is to avoid existential catastrophes such as human termination (which might be difficult if the Vulnerable World Hypothesis ends up being true), [144] it could take measures to significantly decrease the risks [143] while lessening the impact of these procedures on our lifestyle.

Risks

Existential risks

AGI might represent several types of existential risk, which are risks that threaten "the premature extinction of Earth-originating smart life or the permanent and extreme destruction of its capacity for desirable future advancement". [145] The threat of human termination from AGI has actually been the subject of many disputes, however there is likewise the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it might be utilized to spread and maintain the set of worths of whoever establishes it. If humankind still has ethical blind spots similar to slavery in the past, AGI may irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI might assist in mass monitoring and indoctrination, which might be used to create a steady repressive around the world totalitarian program. [147] [148] There is also a threat for the devices themselves. If devices that are sentient or otherwise worthy of moral consideration are mass created in the future, participating in a civilizational path that indefinitely disregards their well-being and interests might be an existential catastrophe. [149] [150] Considering how much AGI could enhance humankind's future and help reduce other existential risks, Toby Ord calls these existential threats "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination

The thesis that AI poses an existential threat for people, and that this risk needs more attention, is controversial but has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:

So, facing possible futures of incalculable advantages and threats, the experts are definitely doing whatever possible to ensure the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll get here in a couple of years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The potential fate of humanity has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence allowed humanity to dominate gorillas, which are now vulnerable in methods that they might not have actually expected. As an outcome, the gorilla has actually become a threatened types, not out of malice, however simply as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind and that we ought to take care not to anthropomorphize them and translate their intents as we would for humans. He stated that people won't be "wise sufficient to create super-intelligent devices, yet extremely dumb to the point of it moronic objectives with no safeguards". [155] On the other side, the principle of instrumental convergence recommends that almost whatever their goals, smart representatives will have factors to try to endure and acquire more power as intermediary steps to accomplishing these objectives. Which this does not require having emotions. [156]
Many scholars who are concerned about existential danger advocate for more research into fixing the "control problem" to address the concern: what types of safeguards, algorithms, or architectures can programmers implement to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could lead to a race to the bottom of safety precautions in order to launch products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can position existential risk likewise has detractors. Skeptics usually say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other problems connected to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for many individuals outside of the technology industry, existing chatbots and LLMs are currently viewed as though they were AGI, leading to additional misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an illogical belief in a supreme God. [163] Some scientists think that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, provided a joint declaration asserting that "Mitigating the danger of extinction from AI need to be a worldwide top priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment

Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make choices, to user interface with other computer system tools, however likewise to manage robotized bodies.

According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up miserably bad if the machine-owners effectively lobby versus wealth redistribution. So far, the trend appears to be towards the second alternative, with technology driving ever-increasing inequality

Elon Musk thinks about that the automation of society will require federal governments to adopt a universal fundamental income. [168]
See also

Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI safety - Research location on making AI safe and beneficial AI alignment - AI conformance to the designated objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated maker learning - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of artificial intelligence to play different games Generative expert system - AI system capable of generating material in response to triggers Human Brain Project - Scientific research job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task knowing - Solving multiple machine learning jobs at the same time. Neural scaling law - Statistical law in maker learning. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer learning - Machine knowing method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically created and enhanced for expert system. Weak expert system - Form of artificial intelligence.
Notes

^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the article Chinese room. ^ AI founder John McCarthy composes: "we can not yet define in general what type of computational treatments we desire to call smart. " [26] (For a conversation of some definitions of intelligence used by artificial intelligence scientists, see viewpoint of synthetic intelligence.). ^ The Lighthill report specifically criticized AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became identified to money only "mission-oriented direct research, instead of basic undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the remainder of the workers in AI if the creators of new general formalisms would reveal their hopes in a more safeguarded form than has sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a standard AI textbook: "The assertion that devices might possibly act intelligently (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are really believing (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic general intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do professionals in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and cautions of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real threat is not AI itself however the way we deploy it. ^ "Impressed by artificial intelligence? Experts say AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI must be a global concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts alert of threat of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on all of us to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based on the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of tough exams both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers avoided the term artificial intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in maker intelligence, artificial basic intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in artificial intelligence: A survey of expert opinion. In Fundamental problems of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a happy medium in between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot utilizing GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 tasks, from playing video games to managing robots", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'simply a couple of years,' states CEO of Google's primary A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard posed however artificial intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact capacity of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their tasks affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can fix issues and attain objectives on the planet as well as human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy sufficient to be understandable will not be complicated enough to act intelligently, while any system made complex enough to behave intelligently will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from makers. For biological creatures, factor and purpose originate from acting worldwide and experiencing the consequences. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who hope to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't depend on governments driven by project financing contributions [from tech business] to push back.' ... Marcus details the needs that residents need to make of their governments and the tech business. They include transparency on how AI systems work; compensation for people if their data [are] utilized to train LLMs (big language model) s and the right to authorization to this use; and the ability to hold tech companies responsible for the harms they bring on by removing Section 230, imposing money penalites, and passing stricter product liability laws ... Marcus likewise suggests ... that a new, AI-specific federal company, akin to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing regime for engineers that would operate in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled people for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has exposed that although NLP (natural-language processing) designs are capable of extraordinary tasks, their capabilities are extremely much restricted by the amount of context they get. This [...] might cause [troubles] for researchers who want to utilize them to do things such as analyze ancient languages. In many cases, there are few historical records on long-gone civilizations to function as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: ratemywifey.com People now use A.I. to create phony videos identical from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply realistic videos produced using expert system that in fact trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited evidence. Their role better looks like that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning models used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic basic intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to ignore inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and tried to count on its vast database of ... facts derived from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however undependable. Rules-based systems can not handle situations their programmers did not prepare for. Learning systems are restricted by the data on which they were trained. AI failures have actually currently caused disaster. Advanced autopilot features in cars, although they perform well in some situations, have actually driven cars without warning into trucks, concrete barriers, and parked cars. In the wrong situation, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to control and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies however depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
Reference: arliesteffan66/rcmcjobs#4

Copyright © 2024 ChainWeaver Org. All Rights Reserved. 版权所有。

京ICP备2023035722号-3

京公网安备 11010802044225号