| ... | ... | @@ -221,43 +221,51 @@ a * b + c = d | 
| 
 | 
 | 
 | 
| 
 | 
 | 
## AddMod
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
计算addMod操作码我们等于验证a,b,n,r 其中n是mod值,r是余数。我们有(a+b)%n = r。我们可以将这个约束转化为(a+b) = n * q + r。为了约束简单我们可以有
 | 
| 
 | 
 | 
a % n= a_div_n + a_remainder a = n * a_div_n + a_remainder
 | 
| 
 | 
 | 
(a_remainder + b) = (a_remainder_plus_b +a_remainder_plus_b_overflow << 256 )
 | 
| 
 | 
 | 
(a_remainder_plus_b + a_remainder_plus_b_overflow << 256 ) % n= b_div_n + r
 | 
| 
 | 
 | 
 note: 其中a_remainder+b 大于256位. 我们可以有以下约束 
 | 
| 
 | 
 | 
计算addMod操作码我们等于验证a,b,n,r 其中n是mod值,r是余数。我们有 **(a+b)%n = r**。我们可以将这个约束转化为 **(a+b) = n * q + r**(商q可能超过256bit)。所以为了约束简单我们可以将上式转换如下:
 | 
| 
 | 
 | 
1.  **a % n= a_div_n + a_remainder** $\Leftrightarrow$ **a = n * a_div_n + a_remainder**
 | 
| 
 | 
 | 
2. **(a_remainder + b) = (a_remainder_plus_b +a_remainder_plus_b_overflow << 256 )**
 | 
| 
 | 
 | 
3. **(a_remainder_plus_b + a_remainder_plus_b_overflow << 256 ) % n= b_div_n + r**
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
```
 | 
| 
 | 
 | 
/// Construct the gadget that checks a * b + c == d * 2**256 + e
 | 
| 
 | 
 | 
/// where a, b, c, d, e are 256-bit words.
 | 
| 
 | 
 | 
///
 | 
| 
 | 
 | 
/// We execute a multi-limb multiplication as follows:
 | 
| 
 | 
 | 
/// a and b is divided into 4 64-bit limbs, denoted as a0~a3 and b0~b3
 | 
| 
 | 
 | 
/// defined t0, t1, t2, t3, t4, t5, t6:
 | 
| 
 | 
 | 
///   t0 = a0 * b0, // 0 - 128bit
 | 
| 
 | 
 | 
///   t1 = a0 * b1 + a1 * b0, //64 - 193bit 两数相加可能存在进位
 | 
| 
 | 
 | 
///   t2 = a0 * b2 + a2 * b0 + a1 * b1, //128 - 258bit
 | 
| 
 | 
 | 
///   t3 = a0 * b3 + a3 * b0 + a2 * b1 + a1 * b2, //192 - 322bit
 | 
| 
 | 
 | 
///   t4 = a1 * b3 + a2 * b2 + a3 * b1,
 | 
| 
 | 
 | 
///   t5 = a2 * b3 + a3 * b2,
 | 
| 
 | 
 | 
///   t6 = a3 * b3,
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
/// Finally we just prove: 
 | 
| 
 | 
 | 
///   t0 + t1 * 2^64 + c_lo = e_lo + carry_0 * 2^128 // carry_0 is 65bit
 | 
| 
 | 
 | 
///   t2 + t3 * 2^64 + c_hi + carry_0 = e_hi + carry_1 * 2^128
 | 
| 
 | 
 | 
///   t4 + t5 * 2^64 + carry_1 = d_lo + carry_2 * 2^128
 | 
| 
 | 
 | 
///   t6 + carry_2 = d_hi
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
carry_0 = (t0 + (t1 << 64) + c_lo).saturating_sub(e_lo) >> 128
 | 
| 
 | 
 | 
carry_1 = (t2 + (t3 << 64) + c_hi + carry_0).saturating_sub(e_hi) >> 128
 | 
| 
 | 
 | 
carry_2 = (t4 + (t5 << 64) + carry_1).saturating_sub(d_lo) >> 128
 | 
| 
 | 
 | 
```
 | 
| 
 | 
 | 
那么需要具体的约束如下,对于第1个等式:
 | 
| 
 | 
 | 
  - a,n,a_remainder,a_div_n 存在mul_add_words约束 a_div_n * n + a_remainder = a
 | 
| 
 | 
 | 
  - 当n!=0时候, 存在a_remainder < n 约束
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
对于第2个等式:
 | 
| 
 | 
 | 
  - b,a_remainder,a_remainder_plus_b 存在add_words约束 a_remainder + b = a_remainder_plus_b + a_remainder_plus_b_overflow << 256
 | 
| 
 | 
 | 
  - b_div_n,n,b_remainder,a_reduced_plus_b_overflow 存在mul_add_words约束 b_div_n * n + r = a_remainder_plus_b + a_remainder_plus_b_overflow << 256 (mul_add_512_gadget)
 | 
| 
 | 
 | 
  - a_remainder < n 约束
 | 
| 
 | 
 | 
  - r < n 约束
 | 
| 
 | 
 | 
  - n_is_zero 约束
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
对于第3个等式:
 | 
| 
 | 
 | 
  - b_div_n,n,b_remainder,a_reduced_plus_b_overflow 存在mul_add_words约束, b_div_n * n + r = a_remainder_plus_b + a_remainder_plus_b_overflow << 256 (mul_add_512_gadget)
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
  - 当n!=0时候,r < n 约束
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
### layout
 | 
| 
 | 
 | 
```
 | 
| 
 | 
 | 
// Addmod arithmetic witeness rows. (Tag::Addmod)
 | 
| 
 | 
 | 
// +-------------+-------------+--------------------------------+--------------------------------+-----+-----------------------+
 | 
| 
 | 
 | 
// | operand_0_hi| operand_0_lo| operand_1_hi                   | operand_1_lo                   | cnt | u16s                  |
 | 
| 
 | 
 | 
// +-------------+-------------+--------------------------------+--------------------------------+-----+-----------------------+
 | 
| 
 | 
 | 
// |             |             |                                |                                | 18  | rn_diff_lo            |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 17  | rn_diff_hi            |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 16  | carry_1               |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 15  | carry_0               |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 14  | b_div_n_lo            |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 13  | b_div_n_hi            |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 12  | r_lo                  |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 11  | r_hi                  |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 10  | a_remainder_plus_b_lo |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 9   | a_remainder_plus_b_hi |
 | 
| 
 | 
 | 
// |             |             |                                |                                | 8   | arn_diff_lo           |
 | 
| 
 | 
 | 
// | b_div_n_hi  | b_div_n_lo  | a_remainder_plus_b_hi          | a_remainder_plus_b_lo          | 7   | arn_diff_hi           |
 | 
| 
 | 
 | 
// | rn_diff_hi  | rn_diff_lo  | carry_2                        |                                | 6   | an_carry_lo           |
 | 
| 
 | 
 | 
// | carry_0     | carry_1     | rn_carry_lt_hi                 | rn_carry_lt_lo                 | 5   | a_remainder_lo        |
 | 
| 
 | 
 | 
// | arn_diff_hi | arn_diff_lo | a_remainder_plus_b_overflow_hi | a_remainder_plus_b_overflow_lo | 4   | a_remainder_hi        |
 | 
| 
 | 
 | 
// | an_carry_hi | an_carry_lo | arn_carry_lt_hi                | arn_carry_lt_lo                | 3   | n_lo                  |
 | 
| 
 | 
 | 
// | a_div_n_hi  | a_div_n_lo  | a_remainder_hi                 | a_remainder_lo                 | 2   | n_hi                  |
 | 
| 
 | 
 | 
// | n_hi        | n_lo        | r_hi                           | r_lo                           | 1   | a_div_n_lo            |
 | 
| 
 | 
 | 
// | a_hi        | a_lo        | b_hi                           | b_lo                           | 0   | a_div_n_hi            |
 | 
| 
 | 
 | 
// +-------------+-------------+--------------------------------+--------------------------------+-----+-----------------------+
 | 
| 
 | 
 | 
```
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
 | 
| 
 | 
 | 
## MulMod
 | 
| 
 | 
 | 
 | 
| ... | ... |  |