布局
arithmetic 子电路的设计包含如下几列。我们重点关注 operand与 u16列,
pub struct ArithmeticCircuitConfig<F> {
q_enable: Selector,
/// Tag for arithmetic operation type
tag: BinaryNumberConfig<Tag, LOG_NUM_ARITHMETIC_TAG>,
/// The operands in one row, splitted to 2 (high and low 128-bit)
operands: [[Column<Advice>; 2]; NUM_OPERAND],
/// The 16-bit values in one row
u16s: [Column<Advice>; NUM_U16],
/// Row counter, decremented for rows in one execution state
cnt: Column<Advice>,
/// IsZero chip for column cnt
cnt_is_zero: IsZeroWithRotationConfig<F>,
}
pub enum Tag {
#[default]
Nil,
Add,
Sub,
Mul,
DivMod,
SltSgt,
SdivSmod,
Addmod,
Mulmod,
}
在这里 tag 我们使用了一个电路小工具“BinaryNumberConfig/BinaryNumberChip”。关于 BinaryNumberChip,详见here。
列的含义
operand* 用来存放算术中的参数值,如 a+b=c+overflow 指令中的 a,b,c,overflow。u16*用来 lookup 算术中的输出如 c_hi,c_lo 属于 u128 范围。这里我们只需要保证输出值的 lookup 就好。cnt 记录某个具体算术指令的行计数器,从正数开始递减到 0。
约束
在 arithmetic 子电路中约束可以分为两类。 通用约束
- 约束 cnt 除零行外,当前行与下一行差值为 1
不同 Tag 对应的约束不同 请注意我们这里所有的 u16 都是 little endian 小端编码
-
Add (含义:a+b=c+overflow*2^256,且 c 的 hi lo 被约束为 8 个 16bit 之和)
- 注:加法可以用这个
- 如果是 cnt=0 行,则 cnt_prev=1,cnt_prev_prev=0
- c_lo = u16 sum(rotation cur)
- c_hi = u16 sum(rotation prev)
- carry hi is bool
- carry lo is bool
- c lo + carry lo * 2^128 = a lo + b lo
- c hi + carry hi * 2^128 = a hi + b hi + carry lo
-
Sub (含义:a-b=c,且 c 的 hi lo 被约束为 8 个 16bit 之和)
- 注:减法,LT,GT 都可以用这个
- c_lo = u16 sum(rotation cur)
- c_hi = u16 sum(rotation prev)
- carry hi is bool
- carry lo is bool
- a_lo + carrry_lo * 2^128 = b_lo + c_lo
- a_hi + carry_hi * 2^128 - carry_lo= b_hi + c_hi
- 注意:carry_hi=1 等价于 a<b; carry_hi=0 等价于 a>=b
-
Div_Mod (a*b+c=d 同时约束 c 小于 b)
if tag is div, (a,b,c,d) = (push, pop2, pop1 - push * pop2, pop1)
if tag is mod, (a,b,c,d) = (if pop2 is zero{0}else{pop1/pop2},pop2,if pop2 is zero{pop1}else{push},pop1)
- define t0 = a0 * b0
- define t1 = a0 * b1 + a1 * b0
- define t2 = a0 * b2 + a2 * b0 + a1 * b1
- define t3 = a0 * b3 + a3 * b0 + a2 * b1 + a1 * b2
- define t_lo=t0+(t1)*2^64
- define t_hi=(t2)+(t3)*2^64
- define carry_lo = (t0 + (t1 << 64) + c_lo).saturating_sub(d_lo) >> 128
- define carry_hi = (t2 + (t3 << 64) + c_hi + carry_lo).saturating_sub(d_hi) >> 128
- 如果是 0 行,约束 num_row is 8,并且约束 cnt 自增的有效性
- a_lo = u16 sum(rotation cur)
- a_hi = u16 sum(rotation -1)
- b_lo = u16 sum(rotation -2)
- b_hi = u16 sum(rotation -3)
- c_lo = u16 sum(rotation -4)
- c_hi = u16 sum(rotation -5)
- d_lo = u16 sum(rotation -6)
- d_hi = u16 sum(rotation -7)
- (t_lo+c_lo-car_lo*2^128) - d_lo
- (t_hi+c_hi+car_lo-car_hi*2^128) - d_hi
- residue < divisor when divisor != 0
- overflow == 0 for opcode DIV/MOD overflow = carry*hi + a1 * b3 + a2 _ b2 + a3 _ b1 + a2 _ b3 + a3 _ b2 + a3 _ b3
- if tag is div 约束 a - a * (1.expr() - divisor_is_zero.expr()) a 是 core gadget push value
- is tag is mod 约束 c - c * (1.expr() - divisor_is_zero.expr()) c 是 core gadget push value
-
Mul(需要 6 行对 a,b,c lookup ) 其中 operand0 是 a,operand1 是 b
- define t0 = a0 * b0
- define t1 = a0 * b1 + a1 * b0
- define t2 = a0 * b2 + a2 * b0 + a1 * b1
- define t3 = a0 * b3 + a3 * b0 + a2 * b1 + a1 * b2
- define t_lo=t0+(t1)*2^64
- define t_hi=(t2)+(t3)*2^64
- define carry_lo = (t0 + (t1 << 64) + c_lo).saturating_sub(d_lo) >> 128
- define carry_hi = (t2 + (t3 << 64) + c_hi + carry_lo).saturating_sub(d_hi) >> 128
- 如果是 0 行,约束 num_row is 6,并且约束 cnt 自增的有效性
- a_lo = u16 sum(rotation cur)
- a_hi = u16 sum(rotation -1)
- b_lo = u16 sum(rotation -2)
- b_hi = u16 sum(rotation -3)
- c_lo = u16 sum(rotation -4)
- c_hi = u16 sum(rotation -5)
- (t_lo-car_lo*2^128) -(c_lo)
- (t_hi+car_lo-car_hi*2^128)- (c_hi)
-
Slt_Sgt (以下操作待写)
-
Sdiv_Smod(这里我们还是使用 a*b+c=d 的公式来进行核心约束,值关注的是对有符号的数进行操作,我们需要运用到补码的知识。) 对有符号整数进行计算时。所有的输入值都由 core circuit 传递。我们在这里约束传递值如下
if tag is sdiv
- a = push
- b = pop2
- c = if is*pop1_neg{get_neg(pop1_abs - push_abs * pop2*abs)}else{pop1_abs - push_abs * pop2_abs}
- d = pop1
if tag is smod
- a = if is_pop2_zero{0}else if is_pop1_neg == is_pop2_neg {pop1_abs / pop2_abs}else{get_neg(pop1_abs / pop2_abs)}
- b = pop2
- c = if pop2.is_zero() { pop1 } else { push }
- d = pop1
constraints
- a_abs,b_abs,c_abs,d_abs
- mul_add_words
- c lt b
- d is_signed_overflow
- a,b,c is zero
- Addmod
- Mulmod
实现 arithmetic 子电路中 Add 例子
如果我们希望为某一个 tag 实现它的约束,我们需要实现 OperationGadget trait,然后在 config 方法中实现相应 tag 的约束就好。具体如下所示
pub(crate) trait OperationGadget<F: Field> {
const NAME: &'static str;
const TAG: Tag;
const NUM_ROW: usize;
fn constraints(
config: &OperationConfig<F>,
meta: &mut VirtualCells<F>,
) -> Vec<(&'static str, Expression<F>)>;
}
接口实现见代码,路径 zkevm-circuits/src/arithmetic_circuit/operation